News: Product News

7th June 2016

More News

peen marking / engraving - micro features

Peen marking/engraving for parts identification is a critical element in industries such as aviation, defence and medical

7th September 2020 • Read »

Taylor Hobson Alignment Telescopes help shipbuilding industry meet their green credentials

Shipbuilders around the world are currently facing the challenge of reducing their environmental impact. The alignment telescope is used for accurate alignment of engines, propeller shafting and stern tubes - reducing vibration and wear which cause fuel inefficiencies.

23rd April 2020 • Read »

Groundbreaking fast 3D measurement of chamfer and edge break

Watch our short video to see how this handheld gauge and 3D analysis software measures chamfer, edge rounding and edge break at high speed.

16th April 2020 • Read »

Introducing 3D micro defect inspection at the MRO Europe Aviation Week

Spectrum Metrology is pleased to introduce a ground-breaking handheld gauging system to the MRO Europe exhibition for rapid micro-defect/corrosion analysis directly on the shopfloor. The 4D INSPEC ® inspection gauge is a completely new method of reliably measuring micro-defects in 3D such as scratches nicks, pits, protrusions, radius of curvature of grooves, spheres and shafts – even rivet geometry.

8th August 2019 • Read »

A Metrology Open Day hosted by Spectrum Metrology, 26th June 2019

Explore New Dimensions at the National Space Centre: Spectrum Metrology will be hosting an Open Day this June in conjunction with Taylor Hobson and FARO. Register now ...

12th March 2019 • Read »

Static Alignment of ships weapon systems using precision electronic tilt measurement system

Static alignment of weapons platforms is of critical importance to achieving weapons accuracy.  A warships structure will bend and flex over the course of its lifetime.  Exposure to rough seas, variations in temperature and changes in loading cause varying stress on the ships frame; refits and accidents cause even more permanent changes.  All of this precipitates variations in the accuracy and precision of the alignment of weapons relative to each other and to the physical configuration of the ship.

The fundamental method for finding static alignment errors is the tilt test or roller path test.  This involves measuring the relative tilt between platforms at a series of places.  When these individual errors are plotted against the bearings, a sine curve results which identifies the magnitude of tilt at the different positions on the vessel.  To achieve the high performance demanded by modern weapon systems, these measurements have to be precise to within a few minutes of arc.

The conventional method of performing a tilt test was to use bubble clinometers (effectively bubble spirit levels) to measure the errors between platforms.  This required that the ship be secured in dock for the duration of the measurements, with maintenance activities on board halted to minimise any movement.  Even under these conditions, the ship could flex with the wind, causing movement of the clinometer and hindering measurement, meaning an engineer had to be present on each platform to adjust the level.

For a ship equipped with many weapons, the conventional method could take several days to complete and the cost of docking and downtime on the ship was substantial.  Moreover, a docked ship experiences different stresses to those experienced when fully floating.  Consequently, there was also uncertainty as to how much the structure would flex when released from dock and how much error would be re-introduced.

Using the CETAMS Electronic Tilt Measurement System allows precise measurement of tilt with no restrictions on movement of personnel or equipment, providing high accuracy measurement at a fraction of the cost of methods using bubble clinometers.

The measurement process for the tilt system is as follows: the ships Master Level Datum located on the ships founding plate acts as the reference platform and a sensor is placed on it, with the remaining sensors normally secured on the other platforms of the weapons system.  This allows simultaneous measurement of all the ships platforms and calculation of the errors between them.

Tilt measurements are integrated and processed to effectively eliminate inaccuracies caused by the ships movement (rolling and pitching).

Accurate measurement of the tiny tilt differences between individual components allows mechanical compensation to be applied.  More frequent correction factors can be entered into the ships fire control system and programmed to correct for them.  This improves gun fire control and increases weapons accuracy.  It is now possible to perform a test in under an hour.

Contact us for further information and to discuss your measurement application